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What is interesting about helium physics ?
Quantum Theory of Corresponding States:

How “quantum” is a (quantum) liquid ?
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ǫ
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x i
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v(|x i − x j |)

Quantum Parameter: Λ =

(

~
2

mǫσ2

)

1
2

Λ ≈ 3 for He, Λ ≈ 1 − 2 for H2, HD, D2, Λ < 0.1 for rare gases.
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Observables: What neutron scatterers measure
Understanding the dynamics of the helium liquids

Double differential cross section: What experimentalists measure
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Dynamic structure function: The definitions
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Density-density response function: What theorists calculate

S(k, ~ω) = −
1
π
ℑmχ(k, ~ω)

δρ1(r, t) =

∫

d3r ′dt ′ χ(r, r′; t − t ′)δVext(r′, t ′)

Generalities - Setting the scene Why helium physics ?



Early experiments
R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and
Woods 1971
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The tools
.. of the theorist and

The theorist’s tools:
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The tools
.. of the theorist and the experimentalist
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Microscopic Many-Body Theory
Hamiltonian, wave functions, observables

Postulate. . .
1 An empirical, non-relativistic microscopic Hamiltonian

H = −
∑

i

~
2

2m
∇2

i +
∑

i

Vext(i) +
∑

i<j

V (i , j)
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Microscopic Many-Body Theory
Hamiltonian, wave functions, observables

Postulate. . .
1 An empirical, non-relativistic microscopic Hamiltonian

H = −
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V (i , j)

2 Particle number, mass
3 Interactions

4 Statistics (Fermi, Bose)
5 Temperature

Turn on your computer and..

Calculate from no other information. . .

1 Energetics
2 Structure
3 Excitations

4 Thermodynamics
5 Finite-size properties
6 Phase transitions (?). . .
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Correlated wave functions: Bragbook

A “simple quick and dirty” method:

Ψ0(1, . . . ,N) = exp
1
2

[

∑

i

u1(r i) +
∑

i<j

u2(r i , r j) + . . .

]

Φ0(1, . . . ,N)

≡ F (1, . . . ,N)Φ0(1, . . . ,N)

Φ0(1, . . . ,N) “Model wave function” (Slater determinant)

Equation of state for 4He and 3He:
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Structure functions of 4He and 3He
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Dynamic Many-Body Theory (DMBT)
(Multi-)particle fluctuations for bosons

Build on the success story for the ground state:
Make the correlations time dependent !

|Φ(t)〉 = e−iE0t/~ 1
N (t)

Fe
1
2 δU |Φ0〉 ,

∣

∣Φ0
〉

: model ground state, δU(t): excitation operator, N (t):
normalization.
Bosons:

δU(t) =
∑

i

δu(1)(r i ; t) +
∑

i<j

δu(2)(r i , r j ; t) + . . .
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p,h,p′,h′(t)a
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p′ahah′

δu(2) describes fluctuations of the short-ranged structure

The physical content of δu(2) is beyond mean field theory !
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Dynamic Many-Body Theory (DMBT)
What these amplitudes do for bosons

δU(t) =
∑

i

δu(1)(r i ; t)
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Bosons: 4He in 3D
Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

Experiments

Feynman (RPA)-Theory

S(k,ω)

ρ = 0.022  (Å−3)

k   (Å−1)
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One-body fluctuations:
Feynman(RPA) spectrum

δU(t) =
∑

i

ei(k·r i−ωt)

~ω(k) = ~
2k2/2mS(k)

~ω(k) = ck as k → 0

The Helium Liquids Confronting Theory and Experiment



Bosons: 4He in 3D
Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

Experiments

Single-Pair-Fluctuations

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

S(k,ω)

ρ = 0.022  (Å−3)

k   (Å−1)

E
  (

m
eV

)

Two-body fluctuations:
Feynman-Cohen “backflow”

δU(t) =
∑

i

ei(k ·̃r i−ωt)

r̃ i = r i +
∑

j 6=i

η(rij)r ij
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Bosons: 4He in 3D
Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

Experiments

Multi-Pair-Fluctuations
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Many-body fluctuations:

δU(t) =
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δu(1)(r i ; t)

+
∑

i<j

δu(2)(r i , r j ; t) + . . .

Stationarity principle

δ

∫

dt
〈
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∣

∣

∣
H + δH(t)− i~

∂

∂t

∣

∣

∣
Φ(t)

〉

= 0
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Bosons: 4He in 3D
Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

Experiments
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Brillouin-Wigner perturbation
theory in the basis {ei

∑
i k·r i

∣

∣Ψ0
〉

}.
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Dynamic Many–Body Theory
A few equations

Dynamic Structure Function

S(k, ω) = −
1
π
ℑm

∫

d3reik·r)χ(r, r′;ω).

Density–density response function

χ(k , ω) =
S(k)

ω − Σ(k , ω)
+

S(k)
−ω − Σ(k ,−ω)

,

Self-energy

Σ(k , ω) = ε0(k)+
1
2

∫

d3pd3q
(2π)3ρ

δ(k − p − q) |V3(k; p, q)|
2

ω − Σ(p, ω − ε0(q))− Σ(q, ω − ε0(p))
.

3-phonon vertex V3(k; p, q)

The Helium Liquids Dynamic Many–Body Theory



Dynamic Many–Body Theory
A few diagrams

(a) (b) (c) (d)

(e) (f) (g) (h)

The Helium Liquids Dynamic Many–Body Theory
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The physical mechanisms
What is a roton ?

Is it

Or

If so, could there be a second Bragg peak ?
(None found in 3D 4He)

The physical mechanisms What is a roton ?



4He in 2D
Theoretical predictions – An experimental challenge

Below saturation (ρ = 0.044 Å−2)
strong anomalous dispersion;
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4He in 2D
Theoretical predictions – An experimental challenge

Below saturation (ρ = 0.044 Å−2)
strong anomalous dispersion;

Roton paramaters within error
bars of Monte Carlo calculations;

Around saturation, not much new;

Close to the liquid-solid phase
transition, a weak, secondary
“roton” !
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4He in 2D
Theoretical predictions – An experimental challenge

Below saturation (ρ = 0.044 Å−2)
strong anomalous dispersion;

Roton paramaters within error
bars of Monte Carlo calculations;

Around saturation, not much new;

Close to the liquid-solid phase
transition, a weak, secondary
“roton” !

Monte Carlo calculations
dynamically inconsistent
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4He in 2D
Theoretical predictions – An experimental challenge

Below saturation (ρ = 0.044 Å−2)
strong anomalous dispersion;

Roton paramaters within error
bars of Monte Carlo calculations;

Around saturation, not much new;

Close to the liquid-solid phase
transition, a weak, secondary
“roton” !

Monte Carlo calculations
dynamically inconsistent

Still a challenge for neutron
scatterer !
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Consequence of roton energy
What does this tell us ?

Sum rules
∫

dωℑmχ(k , ω) = S(k)

∫

dωωℑmχ(k , ω) =
~

2k2

2m

S(k,ω)

ρ = 0.022  (Å−3)
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dωℑmχ(k , ω) = S(k)

∫

dωωℑmχ(k , ω) =
~

2k2

2m

If we assume only one
phonon, we get Feynman (off
by a factor of 2)
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Consequence of roton energy
What does this tell us ?

Sum rules
∫

dωℑmχ(k , ω) = S(k)

∫

dωωℑmχ(k , ω) =
~

2k2

2m

If we assume only one
phonon, we get Feynman (off
by a factor of 2)

Need a multi(quasi-)particle
continuum to get the
energetics right !

S(k,ω)
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The physical mechanisms:
Mode-mode couplings

Experiments
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The ”Pitaevskii plateau”

A perturbation with momentum q and
energy ω can decay into two rotons
q(1)
∆ and q(2)

∆ with |q(1)
∆ | = |q(2)

∆ | = q∆

under momentum and energy and
conservation ω = 2∆.

The roton momenta may be
aligned

|q| ≤ 2qR

The physical mechanisms Mode-mode couplings



The physical mechanisms:
Mode-mode couplings

Experiments

Theory
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The ”Pitaevskii plateau”

A perturbation with momentum q and
energy ω can decay into two rotons
q(1)
∆ and q(2)

∆ with |q(1)
∆ | = |q(2)

∆ | = q∆

under momentum and energy and
conservation ω = 2∆.

The roton momenta may be
aligned

|q| ≤ 2qR

or anti-aligned

|q| ≥ 0
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The physical mechanisms:
Mode-mode couplings

Experiments

Theory
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The ”ghost phonon”

Phonon dispersion relation

ω(q) = cq(1 + γq2)
“normal dispersion”: γ < 0
⇒ phonons are stable

“anomalous dispersion”: γ > 0
⇒ phonons can decay

⇒ 4He at zero pressure is borderline
between normal and anomalous,
γ ≈ 0.1
⇒ Perturbations with momentum (q,
ω) can decay into two phonons with
(q/2, ω/2) as long as the dispersion
relation is almost linear up to q/2.
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The physical mechanisms:
Mode-mode couplings

Experiments

Theory
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Maxon-roton coupling

A similar but less sharply defined
process

The physical mechanisms Mode-mode couplings



Summary

What we know today

Quantitative agreement between experiments in 3D;

Summary



Summary

What we know today

Quantitative agreement between experiments in 3D;

Prediction of a secondary roton–like mode in 2D 4He;

Summary



Summary

What we know today

Quantitative agreement between experiments in 3D;

Prediction of a secondary roton–like mode in 2D 4He;

Prediction of maxon damping at high pressure 4He

Summary



Summary

What we know today

Quantitative agreement between experiments in 3D;

Prediction of a secondary roton–like mode in 2D 4He;

Prediction of maxon damping at high pressure 4He

Structures are more pronounced in 2D;

Summary



Summary

What we know today

Quantitative agreement between experiments in 3D;

Prediction of a secondary roton–like mode in 2D 4He;

Prediction of maxon damping at high pressure 4He

Structures are more pronounced in 2D;

1 → 2 and 2 → 1 processes are not the end of the story but do not
lead to sharp features.

Summary
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